April 13, 2011

Ionizing Radiation | Facility Audit


Ionizing radiation sources can be found in a wide range of occupational settings, including health care facilities, research institutions, nuclear reactors, and their support facilities, nuclear weapon production facilities, and other various manufacturing settings, just to name a few. These radiation sources can pose a considerable health risk to affected workers if not properly controlled.

Although ionizing radiation has been used in workplaces since 1896, its use has grown significantly in recent years. For example, the use of X-ray equipment to inspect luggage, packages, and other items has become very widespread. Currently, ionizing radiation is also used to neutralize harmful biological agents, including anthrax, as well as microorganisms in certain food.

There are also many common uses of ionizing radiation in manufacturing and construction. Ionizing radiation is used, for example, in inspecting welds, measuring the thickness of microelectronic wafers, developing polymers in the rubber and plastics industries, and measuring and inspecting the quantity and quality of goods produced.


What is Ionizing Radiation?
Ionizing radiation is radiation that has sufficient energy to remove electrons from atoms. In this section, it will be referred to simply as radiation. One source of radiation is the nuclei of unstable atoms. For these radioactive atoms (also referred to as radionuclides or radioisotopes) to become more stable, the nuclei eject or emit subatomic particles and high-energy photons (gamma rays). This process is called radioactive decay. Unstable isotopes of radium, radon, uranium, and thorium, for example, exist naturally. Others are continually being made naturally or by human activities such as the splitting of atoms in a nuclear reactor. Either way, they release ionizing radiation. The major types of radiation emitted as a result of spontaneous decay are alpha and beta particles, and gamma rays. X-rays, another major type of radiation, arise from processes outside of the nucleus.

Alpha Particles
Alpha particles are energetic, positively charged particles (helium nuclei) that rapidly lose energy when passing through matter. They are commonly emitted in the radioactive decay of the heaviest radioactive elements such as uranium and radium as well as by some manmade elements. Alpha particles lose energy rapidly in matter and do not penetrate very far; however, they can cause damage over their short path through tissue. These particles are usually completely absorbed by the outer dead layer of the human skin and, so, alpha emitting radioisotopes are not a hazard outside the body. However, they can be very harmful if they are ingested or inhaled. Alpha particles can be stopped completely by a sheet of paper.

Beta Particles
Beta particles are fast moving, positively or negatively charged electrons emitted from the nucleus during radioactive decay. Humans are exposed to beta particles from manmade and natural sources such as tritium, carbon-14, and strontium-90. Beta particles are more penetrating than alpha particles, but are less damaging over equally traveled distances. Some beta particles are capable of penetrating the skin and causing radiation damage; however, as with alpha emitters, beta emitters are generally more hazardous when they are inhaled or ingested. Beta particles travel appreciable distances in air, but can be reduced or stopped by a layer of clothing or by a few millimeters of a substance such as aluminum.

Gamma Rays
Like visible light and x-rays, gamma rays are weightless packets of energy called photons. Gamma rays often accompany the emission of alpha or beta particles from a nucleus. They have neither a charge nor a mass and are very penetrating. One source of gamma rays in the environment is naturally occurring potassium-40. Manmade sources include plutonium-239 and cesium-137. Gamma rays can easily pass completely through the human body or be absorbed by tissue, thus constituting a radiation hazard for the entire body. Several feet of concrete or a few inches of lead may be required to stop the more energetic gamma rays.

X-Rays
X-rays are high-energy photons produced by the interaction of charged particles with matter. X-rays and gamma rays have essentially the same properties, but differ in origin; i.e., x-rays are emitted from processes outside the nucleus, while gamma rays originate inside the nucleus. They are generally lower in energy and therefore less penetrating than gamma rays. Literally thousands of x-ray machines are used daily in medicine and industry for examinations, inspections, and process controls. X-rays are also used for cancer therapy to destroy malignant cells. Because of their many uses, x-rays are the single largest source of manmade radiation exposure. A few millimeters of lead can stop medical x-rays.

No comments:

Post a Comment